Improving Application
Software Security in Linux

Sebastian Neubauer
Technische Universitat Miinchen
Computer Science Department

July 19, 2017

Improve
Security
on Linux

v

C/C++ applications contain bugs

v

Existing security mechanisms
Still many ways for exploitation

v

Improve

v

C/C++ applications contain bugs

Secu rity » Existing security mechanisms
on Linux » Still many ways for exploitation
» Close them!
» Problem:

We need to be fast!

v

Contributions

» mmap randomization: Add random gaps
between mmap allocations

» Canaries: Clear after use and random
values

» Stack pinning: Check the address of the
stack pointer

Exploit: Stack pivoting

Exploit

Stack

Stack pivoting

Heap

buffer overflow

known address

buf frame return
. pointer | addr
|
other
buf

Y

buffer overflow

Exploit
sosc| buf frame | return
Stack pivoting pointer | addr
Heap other
buf

known address

buffer overflow

Exploit
sosc| buf frame | return
Stack pivoting pointer | addr
wean | ROP
chain

known address

|dea

» Check if the stack pointer points to the stack

egio
Stack pinning resion

|dea

v

Check if the stack pointer points to the stack

Stack pinning region

v

Almost every exploit arrives at a syscall

v

Check the stack pointer in every sytem call

Save stack bounds in the kernel task_struct
(for each process/thread)

v

Pitfalls

Stack pinning » Forks, new threads

» Alternate signal stack
» Main stack can grow

Pitfalls Wine and Go

» Stack pivoting as a Feature

Stack pinning

Pitfalls Wine and Go

» Stack pivoting as a Feature

Stack pinning

= Only opt-in possible
» Save the current memory area as stack area
prctl(PR_PIN STACK, ...)

Performance

< Seconds, Less Is Better

patched-active
SE +/-0.27

Performance

patched-inactive

Stack pinning SE 4017

unpatched
SE +/-0.12

» Microbenchmark: (1 & 2) % difference

20

10

> Requests Per Second, More Is Better

patched-active
Performance

patched-inactive
SE +/- 437.44

27845.61

26944.31

Stack pinning

unpatched
SE +/- 344.93

25087.44

6000 12000 18000 24000

» Microbenchmark: (1 & 2) % difference

» ApacheBench: (11 +2)%
©

10

Demo

Problem: mmap is
deterministic

Problem

Deterministic mmap

allocated

pages

free space

allocated

pages

13

Problem

Deterministic mmap

allocated

pages

new allocation

¥

new

allocated

pages

free space

13

Problem

Deterministic mmap

allocated

pages

new allocation

¥

new

allocated

pages

free space

13

|dea

Random mmap

allocated

pages

free space

allocated

pages

14

|dea

Random mmap

new

allocation

¥

allocated

pages

new !

free space

allocated

pages

14

Problem: Canaries are static

Problem

5 5 lobal
Static canaries .

ssp

Y Y

0x178a96b 0x178a96b

buf buf

9db46f00 9db46f00

| foo || main

|dea

Random canaries

Safe stack

Unsafe stack

local

ssp

ret

<D
D%

global

ssp

buf

ssp

|dea

Random canaries

local

local

global

ssp

ret ret
ssp ssp
M M
UV M
N
v v
0x178a96b 0x163ceb11
buf buf
9db46f00 85630100
foo | | main

Summary

» 3 fast additions, which make exploiting harder

> : Make attacking harder with low
overhead

19

Summary

» 3 fast additions, which make exploiting harder

> : Make attacking harder with low
overhead

19

Performance

mmap

< Seconds, Less Is Better

Default
SE +/-0.02

mmap-patch
SE +/-0.02

» Microbenchmark: (2.8 £ 0.5) % slower

21

4 Seconds, Less Is Better

Performance Detaul
mm ap mmap-patch

30 60 90 120

» Microbenchmark: (2.8 £ 0.5) % slower
» Linux compilation: (1 £ 3) % faster

21

	Introduction
	Stack pinning
	Random mmap
	Random canaries
	mmap

