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Abstract
A lot of software that we use today is written in C and C++. Especially these
memory unsafe languages induce vulnerabilities in applications. Therefore
people developed techniques which make the exploitation of program-
ming faults harder. The goal of this work is to fortify these techniques and
introduce new methods to make programs more secure. We analyze the
following techniques with regard to their security effect and their impact
on performance:

1. Checking the position of the stack pointer in every system call, which
showed an overhead of (2.7± 3.3)% in a microbenchmark. The mea-
sured overhead shows a large standard error, thus we cannot be sure
that our patch actually makes applications slower.

2. Adding random gaps between sequent mmap allocations, leading to a
maximal speed loss of (2.8± 0.5)%.

3. Improving the Stack Smashing Protector (SSP) by clearing the SSP
from the stack after checking it (no measureable performance change)
and generating a random SSP for every function call ((265± 4)%
times slower in a microbenchmark, while more realistic workloads
showed a regression of <2%).

We created patches for the stack pointer check and the SSP improvements.
We consider the security, which is added by the discussed patches, useful
enough and the performance overhead low enough, to make use of these
techniques.
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1. INTRODUCTION

1 Introduction

In this section we motivate the introduction of new security mechanisms. Afterwards we
list our contributions.

1.1 Motivation
Software, especially bigger projects, contains bugs (the only exception here are formally
verified programs, but even there the specification could still contain bugs). If an appli-
cation does not have the expected behaviour, it makes its users (and authors) unhappy.
But it gets more critical if a bug can be abused and becomes a vulnerability, which can be
exploited. Exploitation in this context means, an attacker interacts with the application
in a way that it to shows unwanted behaviour. Unwanted behaviour can be for example
remote code execution, which permits the attacker to execute arbitrary code inside the
program.

Memory safe languages like Java are used more and more. This can for example be
seen in the distribution of languages in the newly created repositories on GitHub [4]. From
the perspective of security, unfortunately many libraries, existing and new projects are
still written in C/C++. Important projects (e. g. operating system kernels like linux and
Windows) are often written in low-level languages, which are vulnerable to memory
corruption. This can also be observed for Internet Of Things (IoT) projects. According
to an Eclipse survey from 2016, 48% of IoT projects involve C, only topped by Java with
52% [25] (more than one language per project was possible in this survey).

The security impact of languages like C and C++ is that they can be more easily
exploited than e. g. Java. Kernel exploits are used to elevate privileges and gain power
over a system, which makes them a wanted attack target. Taking IoT devices over can lead
to big botnets, that are able to flood the internet with traffic and take down servers. This is
possible because they are always connected to the internet. For this reason, their security
is also important.

As the amount of devices that are connected to the internet and the amount of software
that is running on them is increasing, the challenge is to make code less exploitable in a
generic way. Additionally that has to happen under the constraint that the performance
impact is small enough. Otherwise, even if a lot of security holes were fixed, the technique
would not be used.
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1. INTRODUCTION

Many techniques trying to improve security have already been invented. AdressSani-
tizer (ASan) [9] was built to dynamically detect memory errors but it is seldom activated
in production environments. Even if ASan if fast compared to other tools, it slows the
application down by a factor of about two. For the reason of speed, techniques that are
actually used in production do not incur a big performance penalty but also cannot detect
as many exploits. Some widely used hardening methods will be covered in section 2.

1.2 Contributions
Our goal is to improve the security of applications by developing security mechanisms
that do not cost much performance but make bugs harder to exploit.

One of our contributions is a patch for the linux kernel that checks in every system call
if the stack pointer actually contains an address which points to the stack area.

Another patch, that already exists, adds random gaps between mmap allocations. We
show that this change comes with a maximal performance overhead of (2.8± 0.5)%.

Finally we improve the hardening done by the Stack Smashing Protector (SSP) in
two ways, which we implemented for the llvm compiler framework. The first part is to
remove unnecessary copies of the SSP on the stack so that they cannot be leaked anymore.
The second part of the fortification is done in conjunction with SafeStack. We introduce
a method to randomize the used SSPs. The security and performance impact are also
examined for these changes.

Because this work is focused on linux, we do not create an implementation or measure
the performance on other operating systems. We do not provide perfect security or control
flow integrity with these changes but we focus on the improvement of exploit mitigation
while still maintaining reasonable performance results.
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2. BACKGROUND

2 Background

This part gives a general introduction into the basics of binary exploitation and security
mechanisms which are important for the understanding of the newly developed methods.

The focus lies on the amd64 architectures and on the linux operating system. Many
parts though are applicable to other architectures and systems as well.

2.1 Process Memory Layout
This section explains the rough memory layout at the start of a process, which is divided
into multiple segments. These parts and their differences are listed in Table 1.

There exists only one heap per process, thus it is possible to allocate an object in one
thread and free it in another thread. For performance reasons, each thread has its own
area on the heap, so locks are not always needed for an allocation.

On popular architectures, the stack grows from high to low addresses, which is – as
we will see later – beneficial for an attacker. The used stack size grows and shrinks with
each function call and return. The area that is used for one function call is called a stack
frame. A stack frame stores the return address of a function and its local variables. Often
local variables are not addressed relative to the stack pointer, which always points to the
last element on the stack, but relative to the frame pointer (also called base pointer), that is
stored in another register and points to the start of the current stack frame. These pointers
are useful for analysing the stack, because the contents of this register will be saved onto
the stack before the base pointer for the current function is set. This leads to a linked list
on the stack, as it can be seen in Figure 1, which is based on the code in Listing 1 (the rbp

register contains the base pointer and the rsp register the stack pointer).

Section Content Rights Occurrence
program code machine code, constant data r-x 1 for the main
read-only data constant data r-- executable and
read-write data static variables r-w 1 for each library
heap runtime allocations r-w 1 per process
stack return addresses, local variables r-w 1 per thread

Table 1: Memory layout of a process
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buf saved bp ret i saved bp ret . . .

mainf

rbprsp

Figure 1: Stack layout

1 void f ( ) {
2 /∗ A c h a r a r r a y o f s i z e 50 on t h e

s t a c k . ∗ /
3 char buf [ 5 0 ] ;
4 /∗ Read an i n p u t l i n e w i t h o u t bounds

c h e c k i n g . ∗ /
5 f g e t s ( buf ) ;
6 }
7

8 i n t main ( ) {
9 i n t i ;

10 for ( i = 0 ; i < 5 ; i ++)
11 f ( ) ;
12 return 0 ;
13 }

Listing 1: Sample C code for Figure 1

1 enter
2 ; i s e q u i v a l e n t t o
3 push rbp
4 mov rbp , rsp
5

6 leave
7 ; i s e q u i v a l e n t t o
8 mov rsp , rbp
9 pop rbp

Listing 2: x86 64 assembler instructions enter
and leave

The machine code, that a compiler emits to create and rewind the frame pointer,
consists of an enter and a leave instruction. They are actually slower than a stack and a
mov operation as shown in Listing 2. For this reason, optimized binaries will use the latter
representation instead of enter and leave.

2.2 mmap

In the following section, we describe a linux system call, which is important to understand
the developed security mechanisms later.

The mmap function of the C library is used in applications to allocate new user space
memory. To accomplish this, it needs to use the mmap system call, to get into linux kernel
code. The kernel then allocates one or more pages (a page is usually 4KiB of memory) and
returns the address of the new memory area. The system call gives the opportunity to
specify an address at which the memory should be placed. If this address is set to zero,
the kernel will choose an address on its own.

Using mmap directly is not useful if one needs only a small amount of memory because
mmap is only able to manage memory areas of which the size is a multiple of the page size.
Instead we usually call malloc and free to manage small allocations of memory in C.
These methods are implemented in the C library which itself uses mmap to allocate memory
from the kernel. It then divides the memory into smaller pieces, which are returned by
malloc. To make memory allocations fast for multi-threaded applications, the code avoids
locks by assigning a separate memory area (for memory allocations) to each thread. If
more memory is needed by malloc, mmap is called or – for the main thread – sbrk, which
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buf ssp saved bp ret i saved bp ret . . .

mainfbuffer overflow

rbprsp

Figure 2: Stack Smashing Protector

increases or decreases the data segment size. For large memory requests (> 128KiB by
default), malloc redirects to mmap.

Another function of mmap is to map the content of a file into a process’s memory or to
share memory between processes.

2.3 Shellcode
Starting with this section, we explain certain attack and defense techniques that are
available and used today.

The reason why C and C++ are dangerous languages, is that they have no bounds
checks on array indexing and pointer dereferencing by default. That means if the code
author forgets to check the bounds, an attacker can supply a too long input (in our
example from Listing 1, longer than the 50 characters, that the buffer can hold) and
overwrite the data behind the buffer. This can easily happen in line 5 in Listing 1, as no
bounds are checked when reading the input. This so called buffer overflow enables the
attacker to overwrite the saved frame pointer (which will be stored in the rbp register in
the main function) and the return address. If the stack growed from low to high addresses,
tampering with control data would not be possible in this way.

By overwriting the return address, the attacker can specify, which code will be executed
when f returns. To abuse this ability, one can write a short snippet of assembler code which
starts a shell (this is called shellcode) into the buffer and overwrite the return address with
the address of the buffer. After f returns, the shellcode will be executed and the attacker
has succeeded to start a shell, which he can now use to execute whatever he wants.

Due to the fact that this is easy to accomplish, techniques were developed that should
make it harder, if not impossible, for an attacker to execute his code.

2.4 Stack Smashing Protector
The Stack Smashing Protector (SSP) is one technique which tries to prevent attackers from
successfully abusing buffer overflows. The SSP that is used in todays compilers is based
on StackGuard [7] from 1998 and used to protect return address and frame pointer from
buffer overflows like the one that is described in subsection 2.3. At the beginning of a
function, some value is pushed onto the stack, after the return address and the saved
base pointer, but before any local variable. This can be seen in Figure 2. Before returning
from the function, the SSP will be compared to its original value. If they are different,
it indicates a buffer overflow and the process aborts. When compiling executables with
-fstack-protector-strong, a prolog and an epilog that set and check the SSP will be
inserted for each function that has a local buffer. In the example this will be done for f.
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Stack

Code

buf saved bp
return

address

"sh"

address

return

address
. . .

pop rdi ret . . . system(char*)

buffer overflow

Figure 3: Return Oriented Programming

Methods with no buffer among the local variables are not vulnerable to a buffer overflow
and will not be modified. The value that is written on the stack is different per process
start. It is initialized from the auxilary vector that is filled by the kernel and then stored in
the thread local storage by the C library.

These protectors, also called canaries, provide a strong protection against buffer over-
flows. Still, there are ways to avoid and circumvent these measures. For example, they do
not at all protect from buffer underruns [14].

2.5 No eXecute bit
Another countermeasure against the use of shellcode is to mark all memory non-executable
except the area where the program code is stored, which is instead read- and execute-only,
hence not writable. This is also known as write xor execute (w⊕x). This means an attacker
cannot store code and execute it without changing the memory permissions.

No eXecute (NX) in linux with grsecurity [3] and Data Execution Prevention (DEP) on
Windows (available since 2004 [2]) implement this mechanism. This effectively thwarts
the usage of shellcode, but it can be circumvented by using return oriented programmining
which is described in subsection 2.6.

2.6 Return Oriented Programming
NX prevents an attacker from executing own code. Therefore he can only reuse already
existing code, which can be accomplished by overwriting the return address with the
address of another code part. He can abuse this by jumping to short sections of code, that
are followed by a return instruction. The attacker can supply many of these locations on
the stack and they will be executed one after the other. These short sections of code are
called Return Oriented Programming (ROP) gadgets and can for example be used to setup
arguments for a final call to system (return-to-libc) as shown in Figure 3. First, the address
of an "sh" string (the sh command starts a new shell) is stored in the rdi register, which
contains the first argument in our calling convention. Then system is called by supplying
another return address, taking the "sh" string as an argument.
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2.7 Stack Pivoting
Sometimes, a difficulty with using ROP is that a buffer overflow is not large enough to
create a working exploit by a simple buffer overflow. However, it can still be possible to
abuse the overflow by writing the ROP chain (the return addresses that the executable will
jump to) into another memory region and – using the limited overflow – point the stack
pointer to the prepared memory, therefore the previously stored gadgets will be executed.
This technique is called stack pivoting because the stack pointer is moved away from the
original stack position.

2.8 Address Space Layout Randomization
A widely used protection mechanism that is implemented in todays operating systems
puts memory segments at random offsets. The idea is that often an attacker needs to
know some memory addresses in order to exploit a program. We can make attacks harder,
by randomizing the addresses, that are needed for an exploit. Now the attacker either
has to leak them or find some other reliable way for an exploit. Address Space Layout
Randomization (ASLR) implements this idea by adding random offsets to the position
of all memory regions. This technique is used since 2006 in Windows [10] and is also
implemented in different flavors for linux and BSD distributions. Due to ASLR, libraries,
heap and stack are allocated at non-deterministic addresses on linux.

However, even if ASLR is on, the executable itself can still be at a static address. To
randomize also the position of the executable, the Position Independent Executable (PIE)
option has to be enabled during compilation. Otherwise an attacker can still call ROP
gadgets from the main program code, which is often sufficient.

On an up to date arch linux system in June 2017, only eight out of 478 binaries in
the base and base-devel package groups are position independant. On a fresh Debian 9
Stretch installation (including an ssh server and gnome), 1035 out of 1045 binaries in the
/bin and /usr/bin directories are position independant. Ubuntu 17.10 [13] and openSUSE
Tumbleweed [17], will enable PIE by default for packages to fix this flaw.

One more weakness of ASLR is the amount of randomness on 32-bit systems. Due to
the limited address space, the offsets only contain 16 random bits which does not provide
sufficient security [24].

2.9 RELocation Read Only
To use dynamically linked libraries, a loader is needed. The loader loads needed libraries at
runtime into the address space of a process. To enable the process to call functions from
these libraries, it writes pointers to the needed functions into the main program’s address
space. The memory area that stores all these pointers is called Global Object Table (GOT).

A widely used attack technique to gain code execution is to overwrite entries in this
table. Every time the application tries to execute the original function, the code at the
newly written address is called.

To mitigate this, all addresses can be resolved at the start of a process. Afterwards, the
GOT memory is set read-only thus an attacker cannot tamper with these values anymore.
This mechanism was invented in 2011 and is called RELocation Read-Only (RELRO) [6].
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Safe stack

Unsafe stack

ret i ret . . .

rsp

unsafe sp

buf ssp . . .

mainf

f

Figure 4: SafeStack

2.10 SafeStack
A lately developed mechanism, which aims to prevent attackers from overwriting control
data, is called SafeStack [5]. It can be found in the llvm clang compiler. The idea is to
mitigate buffer overflows by dividing the stack into two parts. The unsafe stack holds all
buffers and the safe stack stores important, overflow-resistant data like return addresses,
registers and local, non-buffer variables. Therefore return addresses cannot be overwritten
by a buffer overflow because they are not stored behind a buffer. The cost is to hold a
second stack pointer for the unsafe stack which can be seen in Figure 4.

Using SSPs in conjunction with this method does not protect return addresses, because
they are stored in another memory region. But canaries can still be useful to protect the
application. A class of attacks that do not overwrite control data are so called data-only
attacks. They do not touch the return addresses but they overwrite regular data structures,
which can be critical for e. g. a boolean that gives the current user administrator rights.
Storing a SSP between function frames on the unsafe stack prevents overflows from one
function frame into another. This is important to keep the integrity of data. It was even
proposed to put a canary in front of every variable to prevent data-only attacks by buffer
overflows [1].

8



3. DESIGN

3 Design

For each developed mechanism we will describe the existing problem, what we propose
to fix the problem and how our solution performs.

3.1 Stack Pinning
With this patch we want to prevent attackers from successfully using stack pivoting. As
described, stack pivoting is a commonly used technique to work around limited buffer
overflows on the stack. An instruction that resets the stack pointer (e. g. when restoring the
frame pointer) is used to point the stack pointer to an attacker controled memory area (for
example some buffer that contains previously stored input data) during the execution of a
ROP chain. For a valid process there are very few reasons to fiddle with the stack pointer,
hence if it is not pointing to the stack area, it is unwanted behaviour and we conclude that
the process is exploited.

The point where most exploits finally arrive is communication with the operating
system. Often a shell is started using the execve system call, or read and write are used
to leak information. As system calls are a critical point here, a check can be implemented
in the kernel, right before the system calls are executed. A coarse but fast method is to
check whether the stack pointer points to the memory area that was originally reserved
for the stack.

Starting with Windows 8, which was released in 2012, Windows checks the stack
pointer before executing system calls that are related to managing memory (which are
often used in exploits on Windows) [22]. If the stack pointer does not point to the stack of
the application, Windows kills the process.

Until now, there was no such implementation for linux. Our patch adds this check at
the beginning of every system call. Looking at the stack pointer only in specific system
calls would be faster but does also imply the risk, to overlook an important system call
that makes it possible to continue exploitation. For example if exec, open and write do
the check, an attacker could still use openat and writev to read secret data.

3.2 Randomize mmap

ASLR randomizes the base offset for addresses returned by mmap, when it is called with
zero as the address argument. New memory blocks are assigned sequently, just in front

9
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of the already assigned memory. The problem of this behaviour is that leaking a single
heap address (which was allocated using mmap) makes ASLR useless for the heap area.
Allocations are done deterministically thus an attacker is able to recompute all other
addresses, even when they are on pages that were allocated later. This knowledge is useful
e. g. for stack pivoting (see subsection 2.7).

In this section we discuss a remedy that makes the address of further areas, which
are allocated using mmap, nondeterministic. This means an attacker cannot recompute all
addresses and use them for exploitation.

William Roberts proposed a patch for the linux kernel that randomizes the addresses
returned by mmap [21]. To accomplish this, the kernel adds a randomly chosen offset
to nearby allocations, creating a gap between them and decoupling the addresses of
subsequent allocations.

Using this method, if an attacker leaks one address, he can recompute addresses from
the same mmap allocation, but he can only guess the position of other heap memory areas.

3.3 Improving the Stack Smashing Protector
When using the -fstack-protector-strong compiler option, the SSP is written and
checked for each function call where a buffer is stored on the stack. The fact that the canary
value is only set when a process is started and keeps its value throughout the lifetime
of a process, induces some vulnerabilities. If it is leaked by an out-of-bounds read or by
leaking uninitialized memory, it gets useless, because an attacker can just overwrite the
SSP with the correct value, which he now knows, remaining undetected. Another way to
find out its value is possible with servers that fork themself for each connection. The fork

system call will clone the process memory, including the SSP. If an attacker can overflow a
buffer, he can overwrite only the first byte of the protector ( 1

256 chance to succeed) and
observe if the process aborted. If not, he guessed the first byte successfully. By guessing a
static value byte by byte, the attack gets feasible. This specific problem was addressed by
generating a new SSP on forks [16, 19].

The SSP values are written onto the stack, but they are not cleaned up therefore the
value lies on the stack until it is overwritten by a subsequent function call. The presence of
these values increases the probability that it is possible for an attacker to leak the value of
the SSP. It can for example happen through reading uninitialized memory, that means the
value of an unset variable is leaked to the attacker. If the previously stored value at this
position is the canary, the attacker gets to know its value and the stack protector becomes
useless, as described before. We want to improve the protection of SSPs by removing the
values that are not needed anymore.

A simple way to prevent this possible leakage of the SSP is to set the canary memory
to zero after checking its value. This leads to no more unnecessary copies of the SSP on
the stack and completely eliminates the risk to leak the SSP value by uninitialized variables.

In addition, we developed a technique that makes the stored canary values random.
This mitigates all attacks that are based on a static SSP value. Leaking a canary or parts of
it has little gain with this change because the next canary that is used has a completely
different value. Therefore the attacker cannot compute the value of other canaries, based
on leaked SSPs.

To achieve this, we xor the static SSP with a randomly generated value each time
a function is called. One problem with this idea is that the used random value has to

10
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Safe stack

Unsafe stack

TLS
local

ssp
ret . . . global

ssp

unsafe

stack ptr

rsp

buf ssp . . .

Figure 5: Randomize canaries

be stored at a secure location, that cannot be accessed as easily by an attacker as the
location of the SSP. For this goal we leverage SafeStack. The buffers and checked canaries
lie on the separate, unsafe stack while the random value is stored at the same area as
the return address, on the safe stack. When checking the canary value before a function
returns, we xor the global SSP and the random value again. The dataflow is visualized in
Figure 5. As the value on the unsafe stack is completely random, leaking this value leads
to no conclusion for other SSP values, thus only the leaked canary can be successfully
overwritten by an attacker, all other changes will be detected.
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4. IMPLEMENTATION

4 Implementation

Some corner cases and restrictions of the presented techniques are discussed in the follow-
ing sections.

4.1 Stack Pinning
To understand the implementation of the patch, one has to know that in linux, different
processes and threads are handled in an equivalent way. Each thread and process is a task
and threads of the same process just share the same memory, file descriptors, etc.

The stack pinning implementation for the linux kernel adds two new attributes to the
task struct, which holds all information for a task, that the kernel needs: The start and the
end of the current stack region (shown in Listing 3). If the process forks, we either copy
the bounds or – if a new thread is created using the clone system call – we store the new
stack bounds of the thread. The allowed range is determined by the virtual memory area
where the stack pointer points to. In the case of a new thread, this area is allocated by the
application and the start address for the stack is supplied to the kernel.

We have to respect that the main stack, which is reserved at the start of an application,
is able to grow up- or downwards, depending on the architecture. If the current stack is
exhausted, the kernel expands the memory area and updates the bounds.

Another case that has to be considered is the alternate signal stack. If a signal is sent
to a process (like when a user presses Ctrl+C in a terminal) and a signal handler was
registered before, the current task is interrupted and the handler function is executed on
top of the current stack. In the rare case, where the stack is completely exhausted, a signal
will be sent, but it cannot be handled on the regular stack, because it is already full. For
this case the linux kernel gives applications the possibility to register an alternate stack
for signal handling. If such a stack is registered, it will be used to handle every incoming
signal. This memory area is also a valid range for the stack pointer, which has to be kept
in mind when checking for stack pivoting.

4.2 Randomize mmap

The original patch consists of 24 added lines. The key function in the patch is the
randomize mmap function, which takes a free memory area that was found by the kernel

12
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1 s t r u c t t a s k s t r u c t {
2 . . .
3

4 /∗ The l o w e r bound o f t h e p r o c e s s s t a c k , s e t t o z e r o i f no t used . ∗ /
5 unsigned long s t a c k s t a r t ;
6 /∗ The upper bound o f t h e p r o c e s s s t a c k : ∗ /
7 unsigned long stack end ;
8

9 . . .
10 }

Listing 3: Extended task struct

. . . allocated

pages

allocated

pages
. . .new

free space

randomly chosen slot

Figure 6: Add a gap between mmap allocations

and divides it into slots of the requested size. Then it returns a random slot as illustrated
in Figure 6. An excerpt from this function be seen in Listing 4.

4.3 Improving the Stack Smashing Protector
Zeroing the canary after checking it can be done with seven added lines of code, including
comments. Our patch covers the SSP check on x86 architectures, including the case when
SafeStack is used. There is one more implementation of a stack protector in llvm in the
SelectionDAG stage, that is not modified in our work.

Implementing randomized SSPs is more complex. The question arising with this idea
is how random values can be generated. On newer x86 architectures (since Ivy Bridge
and Bulldozer v4 [27]), the rdrand instruction exists. This instruction overwrites a register
with a random value. Unfortunately there is no equivalent on other architectures. A
Pseudo-Random Number Generator (PRNG) like a Linear Congruential Generator (LCG)
can generate fast random numbers. However, even if we truncate the generated values,
an attacker needs only a few leaks to recompute the used parameters [8], which would
again enable the attacker to overwrite the canary without being detected. For this reason,
the only reasonable protection can be achieved by using a Cryptographically Secure
Pseudo-Random Number Generator (CSPRNG).

1 unsigned long randomize mmap ( unsigned long s t a r t , unsigned long end , unsigned long len )
2 {
3 unsigned long s l o t s = ( end − s t a r t ) / len ;
4 return PAGE ALIGN( s t a r t + ( ( get random long ( ) % s l o t s ) ∗ len ) ) ;
5 }

Listing 4: Add gaps between mmap allocations
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The random number generator which is used in our patch is ISAAC [12]. ISAAC comes
in different versions for different purposes. The used version of ISAAC is the optimized
64-bit version for 64-bit systems and the portable version for 32-bit systems. The internal
state and the output array of the generator are 256 words large where the size of a word is
64 or 32 bit, depending on the architecture. For our purpose we use a slightly modified
version of ISAAC. It produces the same results as the original versions but it does not
work in blocks that refill the whole output and state. Instead, the output consists of only
four words and is regenerated every fourth function call. That is done to assure that
function calls do not stall for a longer time, which would be the case if the output buffer
was completely recomputed every 256 calls.

The entropy to initialize the random number generator is taken from the original SSP.
Leaking that value would allow an attacker to recreate the random numbers, so the value
is overwritten with a generated random word, after the random number generator was
initialized. Creating a new thread initializes the thread’s local ISAAC state and the canary
with a random number, generated by the starting thread.

14



5. EVALUATION

5 Evaluation

After describing the concrete implementation, we discuss the performance impact and the
security implications of the proposed changes.

The tables that display the performance results contain the following columns:

1. The configuration, which was used to execute the test.

2. The average of the measurements and the corresponding standard error of the mean
(SEM), which is computed by the student-t test using a confidence level of 68.3%.

3. The standard deviation (SD) of the results.

4. The amount of taken samples.

5. And a performance comparison, relative to the first row. A positive value means,
that the result in the respective row was slower than the basis point, a negative value
means that it was faster.

For the benchmarks in the Stack pinning and Randomizing mmap section, a QEMU virtual
machine was used. The VM had eight out of twelve threads of the host CPU (Intel i7-5820K
@ 3.3GHz). The memory consists of 4GiB of RAM and a 20GiB disk image. The disk is a
raw image and the access is not cached by the host, which is important to not distort the
results. The used kernel is based on linux 4.11.0-rc5.

For the SSP changes, the benchmarks were executed on a six core/twelve thread Intel
i7-5820K @ 3.3GHz with 20GB RAM.

ApacheBench was used from the apache tools in version 2.4.25. The server that was
stressed is nginx 1.12. Apart from the microbenchmarks and the modified ApacheBench
(the public version from openbenchmarking.org does not compile on arch linux), all
benchmarks are publicly available at openbenchmarking.org.

5.1 Stack Pinning
Stack pinning is done by default on Windows. For linux this approach works almost
always good too. Unfortunately some rare applications change the used stack area by
design and it is undecidable for the kernel if such an application is currently exploited
or working correctly. One example is Wine, which can execute Windows applications on
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linux and for that purpose it prepares another stack and switches to the new memory area
when starting the Windows program. The same behaviour can be observed with the Go
programming language, when using goroutines. The stack frames for these functions are
also stored on the heap. Because a kernel with activated stack pinning checks the position
of the stack pointer in every system call, these applications would get killed as soon as
they try to make a system call.

Due to that behaviour, our proposed patch cannot activate stack pinning by default for
every application. We decided to change this feature to be opt-in per process, so existing
applications continue to work, no matter where the stack pointer points to. Programs can
make a prctl(PR PIN STACK, 0, 0, 0, 0) system call, which will activate the protection
and save the stack bounds for the current stack pointer. After this system call succeeded, all
subsequent system calls will first check the position of the stack pointer before proceeding.
If the stack pointer does not point to the same memory region that was used while
activating the feature, the process will get killed (an exception is the alternate signal stack
as explained in subsection 4.1).

Security With regard to security, the same counter attacks as for Windows are possi-
ble [22]. That means, if an attacker knows the address of the stack, attacking is still possible.
If the size of the buffer overflow, which is used to start the exploit, is too small, an attacker
can use stack pivoting to execute a bigger ROP chain. Using this chain, he can write
some ROP gadgets onto the real stack and execute system calls from this stack position
as displayed in Figure 7. This will not trigger the check in the kernel because the actual
system call is done from the stack memory area and the kernel cannot observe if the stack
pointer was pointing somewhere else in between system calls.

If an attacker is not able to execute system calls from the real stack, successful exploita-
tion using system calls is impossible, because the application will get killed, before any
system call is executed.

Performance To measure the worst case performance impact, we executed the getpid

system call for 2× 108 times in a loop. The benchmark was executed in three different
configurations: Using an unpatched kernel, using a patched kernel without activating stack
pinning for the benchmarked process and with activated stack pinning on the patched

Stack

Somewhere else

. . . overwritten

rsp address
. . .

exec

gadget
. . .

buffer overflow known stack address

. . .rop-chain
stack pivot

gadget

Figure 7: Stack pinning counter attack
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Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (18.0± 0.5) s 0.97 s 6 0%
Patched, inactive (18.4± 0.4) s 0.80 s 6 (3± 4)%
Patched, active (18.4± 0.8) s 1.6 s 6 (2± 5)%

Table 2: Stack pinning: 2× 108 getpid system calls

Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (2609± 29)× 101Rs−1 675R s−1 7 0%
Patched, inactive (2750± 22)× 101Rs−1 474R s−1 6 (−5.4± 1.5)%
Patched, active (2720± 14)× 101Rs−1 295R s−1 6 (−4.3± 1.3)%

Table 3: Stack pinning: ApacheBench with nginx, the unit is requests per second,
hence the patched version was slightly faster

kernel. The results, which are displayed in Table 2, show a performance loss of (3± 4)%
compared to an unmodified kernel.

For a more realistic measurement, an application that does many system calls is
necessary. We picked a patched ApacheBench that can enable stack pinning using the prctl
syscall and a similarly patched nginx as a server. There are no regressions visible in this
benchmark (see Table 3), the general uncertainty seems to be bigger than the impact of
the stack pinning change, because the patched versions were faster than the unpatched
version.

5.2 Randomize mmap

Security In a simple test, that does three allocations using mmap, the largest introduced
gap in 1000 runs was 0x4 1762 14e4 pages big (= 0x4176 214e 4000 bytes). That means
for an allocation of a single page (with only one other already allocated page), there is
an entropy of 34 bit. It should be noted that the randomness shrinks after each allocation
because the available gaps get smaller. For example the average size of the second gap is
only half as big as the size of the first gap (0x135c 70f8 compared to 0x2332 2b76 pages).

The higher bits of the random hole size are not evenly distributed as we can observe
from Figure 8 (note the logarithmic scaling of the x axis). A linear scaling would compress
the majority of the data points on the left side which makes it hard to spot something
useful.

Figure 9 partitions the total range, in which gap sizes occur, into slots of 8MiB. It
displays the distribution of gap sizes, e. g. of 0 to 8MiB occur with a probability of 16.6%
between the first and second page allocation. It is visible that smaller gaps occur much

Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (8.59± 0.04) s 0.043 s 3 0%
Patched (8.836± 0.026) s 0.033 s 3 (2.9± 0.5)%

Table 4: Randomize mmap: 2× 107 pages allocated with mmap
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Figure 9: Distribution of mmap gaps

Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (10.654± 0.028) s 0.036 s 3 0%
Patched (10.79± 0.11) s 0.14 s 3 (1.3± 1.1)%

Table 5: Randomize mmap: 2× 108 times allocating a 1024 byte block with malloc

Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (125.5± 1.6) s 2.0 s 3 0%
Patched (124± 4) s 4.1 s 3 (−1.0± 2.8)%

Table 6: Randomize mmap: Compiling the linux 4.9 kernel with a normal and a patched kernel
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more often than large gaps as it can be observed in Figure 9. The median gap size is
0x071b 1c20 pages for the first gap and 0x02ce 7d01 pages for the second.

The randomness that is introduced by adding gaps between allocations makes it
impossible for an attacker to deterministically compute locations of further mapped
memory.

Performance The mmap microbenchmark (see Table 4), which executes just a loop of
mmaps (or mallocs) and sets the first ten bytes of each allocation, shows a slight regression
of (2.9± 0.5)%. For malloc (Table 5), the microbenchmark regressed by (1.3± 1.1)%. For
normal, high workload such as compiling the linux kernel, no performance reduction
could be measured as we can observe from Table 6.

5.3 Improving the Stack Smashing Protector
Security Clearing the SSP reduces the amount of canaries that are stored on the stack
to the necessary minimum. Therefore it provides the maximal possible security against
leaking canaries by uninitialized memory.

Performance For the microbenchmark, the tested program calls a function, which stores
two bytes into a buffer, checks the SSP and returns, for 5× 109 times. One approach that
was tested, is clearing the SSP by a simple mov operation. Another way uses xor to zero the
canary, but the approach using xor is slower by (18.2± 1.5)% compared to not zeroing
the SSP. Table 7 shows that the mov variant was slightly, but not significantly, faster than
the non-zeroing method in three test runs ((0.8± 1.1)%).

We conclude that clearing the SSP is a useful prophylactic measure because it does not
involve a noticable overhead, even in the microbenchmark that only tests the canary in a
loop.

Security Securitywise, leaking a randomized SSP is not as critical as without randomiz-
ing canaries. When leaking one ore more SSPs e. g. by reading out of bounds of a buffer,
the leaked canaries get useless because an attacker can just overwrite them with the now
known value. All other canaries are still secure because the attacker cannot compute their
value. This includes newly created protectors thus an attacker is not able to return from
any other function that is protected by a SSP.

Leaking the global SSP or one used SSP and the corresponding random value (which
enables the attacker to compute the global SSP) allows an attacker to break arbitrary
canaries on the condition that he is also able to supply crafted “random values” on the
SafeStack or that he knows the values that are stored at the respective positions.

Apart from the described advantages, executables are still vulnerable to attacks that
do not touch the canary as described in subsection 2.4.

Performance When testing the performance of a randomized canary, ISAAC performed
a lot faster than the rdrand hardware instruction for a source of randomness.

The microbenchmark in Table 8 revealed a huge performance impact when using
rdrand. It was (20.4± 0.4) times slower than just SafeStack. ISAAC on the other side
was only (2.65± 0.04) times slower. For the tested workload, the greatest impact of
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Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (7.35± 0.07) s 0.091 s 3 0%
mov (7.295± 0.030) s 0.038 s 3 (−0.8± 1.1)%
xor (8.69± 0.07) s 0.088 s 3 (18.2± 1.5)%

Table 7: Clear the SSP: Call a protected function 5× 109 times

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (1.608± 0.017) s 0.022 s 3 0%
gcc (3.078± 0.018) s 0.023 s 3 (91.5± 2.3)%
ssp-strong (2.030± 0.016) s 0.021 s 3 (26.3± 1.7)%
SafeStack (2.36± 0.04) s 0.040 s 3 (47.1± 2.5)%
rdrand (48.3± 0.7) s 0.84 s 3 (290± 6)× 101%
isaac (6.27± 0.05) s 0.057 s 3 (290± 5)%

Table 8: Randomize the SSP: Call a protected function 5× 108 times

compiler options is activating stack-protector-strong ((26.3± 1.7)% slowdown com-
pared to clang without options) and using rdrand. Enabling SafeStack (additionally to
stack-protector-strong) impairs the speed by (16.4± 1.8)%.

We also tested the change for some more realistic workloads. 7-Zip (Table 9) shows
a regression of (1± 1)% (compared to SafeStack), LAME MP3 Encoding (Table 10)
(1.3± 0.4)%. The overall performance penalty of randomizing the SSP is low enough
hence it can be useful.

More benchmarks can be found in the appendix.
On platforms that support the rdrand instruction it could still be useful if it is used to

initialize the state vector of ISAAC which does not need to be done often.

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (2943± 11)× 101MIPS 139MIPS 3 0%
ssp-strong (2980± 17)× 101MIPS 215MIPS 3 (−1.3± 0.7)%
SafeStack (2966± 8)× 101MIPS 101MIPS 3 (−0.8± 0.5)%
rdrand (2945± 13)× 101MIPS 157MIPS 3 (−0.1± 0.6)%
isaac (2926± 27)× 101MIPS 353MIPS 3 (0.6± 1.0)%

Table 9: Randomize the SSP: 7-Zip compression, the unit is Million Instruction Per Second
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Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (11.31± 0.04) s 0.076 s 5 0%
ssp-strong (11.23± 0.05) s 0.097 s 5 (−0.7± 0.6)%
SafeStack (11.173± 0.025) s 0.048 s 5 (−1.2± 0.5)%
rdrand (12.11± 0.05) s 0.093 s 5 (7.1± 0.6)%
isaac (11.318± 0.028) s 0.053 s 5 (0.1± 0.5)%

Table 10: Randomize the SSP: LAME MP3 Encoding
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6 Discussion

In this section we describe similar and related techniques and possible additions that can
provide even more security.

6.1 Related Work
An overview over vulnerability and mitigation techniques, including some performance
measurements was done at Meiji University [23]. Another thorough analysis of memory
corruption bugs was done in SoK: Eternal war in memory [26]. In contrast, our work focuses
on selected techniques, contains benchmark results and analyzes security mechanisms.
Additionally we developed new methods to prohibit certain types of exploits.

Windows implemented a bounds check in system calls that manipulate memory and
are often used in exploits. Our approach follows this way and adds a check for the stack
pointer in every system call on linux. A remedy to stack pivoting with the same goal was
developed at Syracuse University [20]. Their approach modifies the compiler generated
code to insert stack pivoting checks at every absolute modification of the stack pointer.
This will insert a check e. g. after each leave instruction. Relative modifications are not
checked. The method uses another starting point (the compiler instead of the kernel)
compared to our implementation. It has the advantage, that stack pivoting gets detected
earlier, right at the point where an attacker tries to modify the stack pointer. Because of
this, the main counter attack that was presented for Windows [22] and which also works
for the method used in this work, is successfully thwarted.

SafeStack needs two stack pointers, one for the safe and one for the unsafe stack. This
comes with runtime costs. Another proposed approach trades performance for memory
consumption [28]. There, the different stacks have a fixed offset to each other. That means,
every stack has the same size and each function frame is present on each stack. But the
stored data is available on only one of the stacks. Stack addresses can be computed without
additional runtime costs, just by adding a fixed offset to the address of each variable at
compile time. This offset determines the stack, on which the respective variable is stored.
The disadvantage of this approach is that the consumed memory area is larger since the
different stacks have all the same size. An object that is allocated on one stack still reserves
the same space on all other stacks (i.e. two stacks double the stack memory consumption).
Compared to the approach of SafeStack, it has no performance overhead and is easily
scalable to more than two stacks, but that comes at a high stack memory overhead.
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The discussed mmap patch improves randomization of the address space to complicate
successful address guesses by an attacker. ASLR-Guard also hardens the randomization of
addresses by preventing leaks of code addresses [15]. To accomplish that, it takes a similar
approach to SafeStack and creates multiple memory areas. Additionally, code pointers
that are used as data get encoded, therefore their leak does not lead an attacker to code
addresses. This is different from the mmap hardening as it works on a complete protection
of code pointers while the mmap randomization improves hiding data addresses.

Clearing canaries after checking them is used to protect from leaking them, especially
from uninitialized buffer reads. An efficient way to prevent data leaks in all cases by
initializing all used memory is provided by SafeInit [18]. This compiler modification
initializes all allocated memory with zeroes. Stack variables are also initialized when they
come in scope. To reduce the performance overhead, compiler optimizations, which e. g.
remove double stores without a read in between, are used. Because of these optimizations,
the danger of uninitialized data can be eliminated with a speed loss of <5%.

As mentioned in subsection 2.4, renewing the SSP value on process forks fixes one of
the problems related to static canaries [16]. The described technique has the advantage
that it can be used by preloading a shared library. Additionally it has less performance
overhead than randomizing all used SSPs. One flaw of modifying the SSP on forks in
the proposed way is that correct code is not guaranteed to work. Changing the global
canary value means, that all newly written SSPs are using the new value. For checking
the canaries, the new value is used. The problem is that functions, which were called
before the fork, still used the old canary. Hence if the function that called fork returns,
it will check the stored SSP (which is the old value) against the global SSP, which holds
the new value. Therefore the process will abort, even if nobody tampered with the canary.
While there is no program in our knowledge where the child process returns from the
forking function, it is still important, that correct programs do not show invalid behaviour.
At the cost of performance, this problem can be addressed [19]. The proposed remedy
stores addresses to all SSPs which are currently saved on the stack. On a fork, the global
canary and additionally all already stored values are modified. Our proposed method,
that generates a random SSP per function call, also fixes the problem of forks, but it also
includes overhead when no fork is made.

6.2 Future Work
Randomizing the SSP and using stack protectors in every function reduces the amount
of available ROP gadgets because an attacker would always have to provide a valid
canary. It would be even better if the canary was checked after restoring the registers and
rsp, thus not even register setting gadgets are available to an attacker. This is difficult
to implement in llvm because the stack frame allocation code is introduced late in the
compilation process, much later than the creation of SSPs, thus it was not in the scope of
this work.

The patches focus only the linux operating system and the llvm compilers. The ideas
should be applicable to other compilers and operating systems too and should have a
similar effect on speed.
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6.3 Conclusion
Our goal is to make it more difficult for attackers to exploit existing bugs in software.
The new techniques, that we introduced, support this goal because each of them makes
circumventing security measures harder for an attacker.

The maximal speed loss of our changes, that we tested by microbenchmarks, is only
(3± 3)% for stack pinning and (2.8± 0.5)% for mmap randomization. The only case, where
it was a lot higher, is for random SSPs. Using the ISAAC cipher was (2.65± 0.04) times
slower than only using SafeStack with -fstack-protector-strong. The performance
impact on existing applications was not measurable for most of the introduced techniques.
Only randomized canaries show a regression of <2%, which we see as still acceptable for
relevant applications.

24



REFERENCES

References
[1] Steven Van Acker et al. ValueGuard: Protection of Native Applications against Data-only

Buffer Overflows. 2010.

[2] Starr Andersen and Vincent Abella. Memory Protection Technologies. https://technet.
microsoft.com/en-us/library/bb457155.aspx, visited 2017-06-12. 2004.

[3] Daniele Argento, Patrizio Boschi, and Luca Del Basso. NX bit. 2007.

[4] Donnie Berkholz. Bypassing StackGuard and StackShield. http : / / redmonk . com /

dberkholz/2014/05/02/github-language-trends-and-the-fragmenting-landscape/,
visited 2017-06-13. 2014.

[5] Gang Chen et al. SafeStack: Automatically Patching Stack-Based Buffer Overflow Vulner-
abilities. 2013.

[6] J. Cohen. RELRO: RELocation Read-Only. 2011.

[7] Crispan Cowan et al. “StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks”. In: USENIX Security Symposium. Vol. 7. 1998.

[8] Alan M. Frieze et al. Reconstructing Truncated Integer Variables Satisfying Linear Con-
gruences. 1998.

[9] Google. AdressSanitizer. https : / / github . com / google / sanitizers / wiki /

AddressSanitizer, visited 2017-06-14. 2011.

[10] Michael Howard. Address Space Layout Randomization in Windows Vista. https://
blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-

randomization-in-windows-vista/, visited 2017-06-12. 2006.

[11] John the Ripper FAQ. http://www.openwall.com/john/doc/FAQ.shtml, visited 2017-07-
12. 2015.

[12] Robert J. Jenkins Jr. ISAAC. http://www.burtleburtle.net/bob/rand/isaac.html,
visited 2017-06-18. 1993.

[13] Steve Langasek. Ubuntu Foundations Team - Weekly Newsletter, 21017-06-15. https:
//lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html, visited 2017-
06-16. 2017.

[14] David Litchfield. Buffer Underruns, DEP, ASLR and improving the Exploitation Preven-
tion Mechanisms (XPMs) on the Windows platform. 2005.

[15] Kangjie Lu et al. ASLR-Gurd: Stopping Address Space Leakage for Code Reuse Attacks.
2015.

[16] Hector Marco-Gisbert and Ismael Ripoll. Preventing Brute Force Attacks Against Stack
Canary Protection on Networking Servers. 2013.

[17] Marcus Meissner. [opensuse-factory] openSUSE Tumbleweed now full of PIE. https:
//lists.opensuse.org/opensuse-factory/2017-06/msg00403.html, visited 2017-06-
17. 2017.

[18] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. SafeInit: Comprehensive and
Practical Mitigation of Uninitialized Read Vulnerabilities. 2017.

[19] Theofilos Petsios, Vasileios P. Kemerlis, and Michalis Polychronakis. DynaGuard:
Armoring Canary-based Protections against Brute-froce Attacks. 2015.

25

https://technet.microsoft.com/en-us/library/bb457155.aspx
https://technet.microsoft.com/en-us/library/bb457155.aspx
http://redmonk.com/dberkholz/2014/05/02/github-language-trends-and-the-fragmenting-landscape/
http://redmonk.com/dberkholz/2014/05/02/github-language-trends-and-the-fragmenting-landscape/
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-randomization-in-windows-vista/
https://blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-randomization-in-windows-vista/
https://blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-randomization-in-windows-vista/
http://www.openwall.com/john/doc/FAQ.shtml
http://www.burtleburtle.net/bob/rand/isaac.html
https://lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html
https://lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html
https://lists.opensuse.org/opensuse-factory/2017-06/msg00403.html
https://lists.opensuse.org/opensuse-factory/2017-06/msg00403.html


REFERENCES

[20] Aravind Prakash and Heng Yin. Defeating ROP Through Denial of Stack Pivot. 2015.

[21] William Roberts. Introduce mmap randomization. https://patchwork.kernel.org/
patch/9248669/, visited 2017-06-12. 2016.

[22] Dan Rosenberg. Defeating Windows 8 ROP Mitigation. http://vulnfactory.org/blog/
2011/09/21/defeating-windows-8-rop-mitigation/, visited 2017-06-12. 2011.

[23] Takamichi Saito et al. “A Survey of Prevention/Mitigation against Memory Cor-
ruption Attacks”. In: International Conference on Network-Based Information Systems.
Vol. 19. 2016.

[24] Hovav Shacham et al. On the Effectiveness of Address-Space Randomization.

[25] Ian Skerrett. Profile of an IoT Developer: Results of the IoT Developer Survey. https:
//ianskerrett.wordpress.com/2016/04/14/profile-of-an-iot-developer-results-

of-the-iot-developer-survey/, visited 2017-06-13. 2016.
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Acronyms

Acronyms
ASan AdressSanitizer.

ASLR Address Space Layout Randomization.

CSPRNG Cryptographically Secure Pseudo-Random Number Generator.

DEP Data Execution Prevention.

GOT Global Object Table.

IoT Internet Of Things.

LCG Linear Congruential Generator.

NX No eXecute.

PIE Position Independent Executable.

PRNG Pseudo-Random Number Generator.

RELRO RELocation Read-Only.

ROP Return Oriented Programming.

SSP Stack Smashing Protector.
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Appendix
Randomize mmap

Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (26.8± 0.6) s 1.1 s 6 0%
Patched (25.7± 1.1) s 2.4 s 6 (−4± 5)%

Table 11: t-test1, 1 thread

Configuration Avg ± SEM SD Samples Rel. perf. loss
Unpatched (7.03± 0.05) s 0.058 s 3 0%
Patched (7.019± 0.028) s 0.036 s 3 (−0.2± 0.8)%

Table 12: t-test1, 2 threads

Randomizing the Stack Smashing Protector

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang 122 Imin−1 0 Imin−1 3 0%
ssp-strong 116 Imin−1 0 Imin−1 3 5%
SafeStack (115.3± 0.9) Imin−1 1.2 Imin−1 3 (5.5± 0.8)%
rdrand (114.3± 0.9) Imin−1 1.2 Imin−1 3 (6.3± 0.8)%
isaac (114.7± 0.9) Imin−1 1.2 Imin−1 3 (6.0± 0.8)%

Table 13: GraphicsMagick: Blur, the unit is Iterations per minute

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (115.7± 0.5) Imin−1 0.58 Imin−1 3 0%
ssp-strong 113 Imin−1 0 Imin−1 3 (2.3± 0.4)%
SafeStack 114 Imin−1 0 Imin−1 3 (1.4± 0.4)%
rdrand (113.7± 0.5) Imin−1 0.58 Imin−1 3 (1.7± 0.6)%
isaac 114 Imin−1 0 Imin−1 3 (1.4± 0.4)%

Table 14: GraphicsMagick: Sharpen
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Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (156.7± 1.2) Imin−1 1.5 Imin−1 3 0%
ssp-strong 154 Imin−1 0 Imin−1 3 (1.7± 0.8)%
SafeStack (154.7± 0.9) Imin−1 1.2 Imin−1 3 (1.3± 1.0)%
rdrand (154.0± 0.8) Imin−1 1.0 Imin−1 3 (1.7± 0.9)%
isaac (154.3± 1.2) Imin−1 1.5 Imin−1 3 (1.5± 1.1)%

Table 15: GraphicsMagick: HWB Color Space

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (89.7± 0.5) Imin−1 0.58 Imin−1 3 0%
ssp-strong 87 Imin−1 0 Imin−1 3 (3.0± 0.5)%
SafeStack (87.3± 0.5) Imin−1 0.58 Imin−1 3 (2.6± 0.7)%
rdrand 82 Imin−1 0 Imin−1 3 (8.6± 0.5)%
isaac 85 Imin−1 0 Imin−1 3 (5.2± 0.5)%

Table 16: GraphicsMagick: Local Adaptive Thresholding

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (11.61± 0.22) s 0.36 s 4 0%
ssp-strong (11.12± 0.25) s 0.54 s 6 (−4.2± 2.8)%
SafeStack (10.86± 0.11) s 0.14 s 3 (−6.5± 2.0)%
rdrand (12.69± 0.15) s 0.19 s 3 (9.3± 2.4)%
isaac (12.27± 0.21) s 0.27 s 3 (5.7± 2.7)%

Table 17: FFmpeg: H.264 HD To NTSC DV

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (843± 19)× 101Cs−1 411C s−1 6 0%
ssp-strong (81± 4)× 102Cs−1 686C s−1 6 (4± 5)%
SafeStack (8791± 16)C s−1 20C s−1 3 (−4.2± 2.4)%
rdrand (872± 6)× 101Cs−1 75C s−1 3 (−3.4± 2.4)%
isaac (857± 21)× 101Cs−1 266C s−1 3 (−2± 4)%

Table 18: John The Ripper: Blowfish, the unit is means combinations of candidate password and target
hash per second [11]
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Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (259± 8)× 105Cs−1 1 655 184C s−1 6 0%
ssp-strong (259± 13)× 105Cs−1 2 831 141C s−1 6 (0± 6)%
SafeStack (272 016± 22)× 102Cs−1 2886C s−1 3 (−5± 4)%
rdrand (271± 4)× 105Cs−1 456 711C s−1 3 (−5± 4)%
isaac (256± 7)× 105Cs−1 1 494 503C s−1 6 (1± 4)%

Table 19: John The Ripper: Traditional DES

Configuration Avg ± SEM SD Samples Rel. perf. loss
clang (105± 4)× 103Cs−1 8798C s−1 6 0%
ssp-strong (1133± 12)× 102Cs−1 1527C s−1 3 (−7± 5)%
SafeStack (107± 5)× 103Cs−1 9900C s−1 6 (−2± 6)%
rdrand (1151± 8)× 102Cs−1 1000C s−1 3 (−9± 5)%
isaac (107± 5)× 103Cs−1 10 123C s−1 6 (−2± 6)%

Table 20: John The Ripper: MD5
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